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Abstract

In functional magnetic resonance imaging (fMRI) analysis, although the univariate general linear model (GLM) is currently the dominant
approach to brain activation detection, there is growing interest in multivariate approaches such as principal component analysis, canonical
variate analysis (CVA), independent component analysis and cluster analysis, which have the potential to reveal neural networks and
functional connectivity in the brain. To understand the effect of processing options on performance of multivariate model-based fMRI
processing pipelines with real fMRI data, we investigated the impact of commonly used fMRI preprocessing steps and optimized the
associated multivariate CVA-based, single-subject processing pipelines with the NPAIRS (nonparametric prediction, activation, influence and
reproducibility resampling) performance metrics [prediction accuracy and statistical parametric image (SPI) reproducibility] on the
Fiswidgets platform. We also compared the single-subject SPIs of univariate GLM with multivariate CVA-based processing pipelines from
SPM, FSL.FEAT, NPAIRS.GLM and NPAIRS.CVA software packages (or modules) using a novel second-level CVA. We found that for the
block-design data, (a) slice timing correction and global intensity normalization have little consistent impact on the fMRI processing pipeline,
but spatial smoothing, temporal detrending or high-pass filtering, and motion correction significantly improved pipeline performance across
all subjects; (b) the combined optimization of spatial smoothing, temporal detrending and CVA model parameters on average improved
between-subject reproducibility; and (c) the most important pipeline choices include univariate or multivariate statistical models and spatial
smoothing. This study suggests that considering options other than simply using GLM with a fixed spatial filter may be of critical importance
in determining activation patterns in BOLD fMRI studies.
© 2009 Elsevier Inc. All rights reserved.
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1. Introduction

Over the past one and a half decades, functional magnetic
resonance imaging (fMRI) has emerged as a powerful neuro-
imaging tool for the study of brain functions and brain
diseases. fMRI, as a noninvasive procedure, has become
a critical step in preoperative surgical planning [1–3], and
fMRI analysis for individual patient has been used for
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presurgical mapping. The rapid growth of fMRI applications
demands the development of techniques to measure the
accuracy and reliability of fMRI analysis software packages
such as SPM (Statistical Parametric Mapping), AFNI
(Analysis of Functional NeuroImages) and FSL (FMRIB
Software Library).

fMRI software diagnostic tools such as Statistical
Parametric Mapping Diagnosis (SPMd, http://www.sph.
umich.edu/∼nichols/SPMd/) have been developed to estab-
lish the validity of fMRI models and inferences through
diagnosis and exploratory data analysis [4]. However, such
tools are specific to certain fMRI software package and not
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easily generalized to others, which makes performance
across different packages hard to compare. As a matter of
fact, given the same fMRI data, different fMRI analysis
software packages with nominally equivalent parameter
settings may generate different activation maps or statistical
parametric images (SPIs). This variation stems from different
approaches in the software implementation for fMRI
preprocessing steps and statistical models. In addition, the
incompatibility of various fMRI software tools has made it
more difficult to compare and evaluate results [5] among
numerous fMRI studies [6,7].

In this study, an fMRI processing pipeline (an analysis
chain [8] or “functional neuroimaging data chain” [9]) refers
to a series of fMRI processing steps after data acquisition
and image reconstruction, which include data format
conversion, preprocessing, statistical analysis and result
visualization. Several fMRI preprocessing steps such as
motion correction and spatial smoothing have been found
effective in reducing noise and improving signal-to-noise
ratios [10–16]. However, the impact of other preprocessing
steps is unclear, for example, slice timing correction, global
intensity normalization and low-pass filtering [17–22]. In
addition, in practice, an SPI is usually obtained with a
certain set of preprocessing steps and parameters in fMRI
analysis. When preprocessing steps and parameters are
changed, the SPI will often change accordingly. Therefore,
it is of interest to seek the best combination of such
preprocessing steps and parameters in order to better reveal
the true activation patterns.

In fMRI statistical analysis, a number of statistical
methods or models have been proposed for fMRI activation
detection. These models can be classified into two categories:
univariate (or model-driven) methods such as the general
linear model (GLM) [23–26], which characterizes region-
specific responses at each voxel based on assumptions, and
multivariate (or data-driven) methods such as principal
component analysis (PCA) [27–31], canonical variate
analysis (CVA) [32–34], independent component analysis
(ICA) [35–37] and cluster analysis [38–41], which are often
exploratory and data driven and have the potential to identify
activation patterns that may reveal neural networks and
functional connectivity [42,43]. To date, univariate GLM is
still the dominant approach in fMRI analysis, but there is
growing interest in multivariate approaches [43–47]. This
may be due to the limitation of univariate analysis (GLM) that
it does not take into account network-dependent spatial
correlations among voxels, while the advantage of multi-
variate analysis is that it automatically models the spatial
correlations in an fMRI volume, which helps identify large-
scale neural networks in the brain. Some multivariate
approaches such as CVA, ICA and cluster analysis have
been made available in software packages (or modules) such
as SPM.MM (Multivariate Methods for fMRI, http://www.
madic.org/download/MMTBx/), FSL.MELODIC (Multi-
variate Exploratory Linear Optimized Decomposition into
Independent Components, http://www.fmrib.ox.ac.uk/fsl/
melodic/index.html) and EROICA (Exploring regions of
interest with cluster analysis, EvIdent).

For univariate GLM-based processing pipelines, much
research has been conducted on the impact of different
preprocessing or statistical analysis options on fMRI acti-
vation detection [6,12,22,48]. In particular, Thirion et al.
[49,50] reported that group size, choice of voxel level or
cluster level analysis, choice of parametric or nonparametric
analysis method and choice of random- or mixed-effects
statistics all have significant effects on the reliability of
activationmaps in fMRI group analysis with GLM.However,
there have been few such studies for multivariate fMRI
processing pipeline; for example, what pipeline options
(including options and parameters for data preprocessing and
statistical analysis) are appropriate and can best reveal the
true activation patterns? Further, are these pipeline options
and parameters similar to, or different from, those of
univariate GLM-based fMRI processing pipelines? To
address these questions, it is necessary to evaluate and
optimize multivariate fMRI processing pipelines.

Receiver operating characteristic (ROC) analysis is the
most widely used approach to method evaluation. Since
there is no easily measurable ground truth in real fMRI data,
ROC analysis requires simulation. Considerable work has
been done to evaluate fMRI preprocessing steps and
statistical methods with the ROC approach on simulated
data [6,21,44,48,51,52]. However, the effectiveness of
standard ROC analysis depends on how well the simulated
data approximates the real data. To overcome simulation-
dependent biases, several modified ROC methods were
developed to work with real fMRI data [53–56]. Never-
theless, the fundamental problem of unknown ground truth
in real fMRI data ultimately hinders the accuracy of these
modified ROC methods.

The NPAIRS (nonparametric prediction, activation,
influence and reproducibility resampling) framework has
been proposed as an alternative to ROC methods to evaluate
and optimize fMRI processing pipelines [9]. The NPAIRS
approach is rooted in predictive learning (or machine
learning) and works on real fMRI data. The validity of an
fMRI processing pipeline can be estimated by measuring its
predictive and reproducible performance metrics using
“split-half resampling,” a combination of twofold cross-
validation and delete-d jackknife resampling. In each split,
the data are divided into training and test sets (e.g., according
to the number of subjects or runs) and model parameters
estimated in the training set are used to predict design matrix
parameters (e.g., scan state or class) in the test set. Prediction
accuracy (p) is measured as the average posterior probability
of each fMRI volume's true class membership (i.e., predicted
baseline or activation brain state) in the test set based on the
training set parameters and Bayes formula [9,57]. For each
independent pair of split-half data sets, the resulting SPIs'
reproducibility is defined as the correlation (r) between all
pairs of spatially aligned voxels in the brain. In general, the
average, or median, of the distribution of such correlation
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values is obtained from the independent SPIs of many split-
half resamplings of the fMRI data. In the NPAIRS approach,
reproducible SPIs can be obtained from any data analysis
approach on a Z-score scale [9]. The NPAIRS approach has
been implemented in the NPAIRS software package
(Contact S. Strother for software, sstrother@rotman-
baycrest.on.ca) which also provides statistical models
such as GLM and PCA/CVA for statistical analysis. The
utility of the NPAIRS framework has been demonstrated
by a number of single-subject and group analyses in
functional neuroimaging studies [8,9,58–61].

In this study, to explore pipeline options in fMRI multi-
variate processing pipelines, we used the NPAIRS approach
to evaluate the impact of a series of preprocessing steps (slice
timing correction, motion correction, spatial smoothing,
temporal filtering and global intensity normalization) and to
optimize the associated multivariate CVA-based single-
subject processing pipelines. We also compared the univariate
GLM (in FSL, SPM2 and NPAIRS) with the multivariate
CVA (in NPAIRS) using a novel second-level CVA in order
to further identify the most important pipeline options and
to reveal how they impact fMRI activation patterns.
2. Methods

2.1. fMRI and MRI data

This study used a BOLD fMRI data set, in which a block-
design parametric static force experiment was performed on
16 normal subjects who were scanned on a 1.5-T Siemens
scanner. Two fMRI runs per scan session were acquired with
an EPI BOLD sequence (TR=3986 ms, TE=60 ms, FA=90°,
matrix=64×64, FOV=220×220 mm, number of slices=30,
number of time points=135). In each run, there were six
baseline periods, which alternated with five activation
periods during which a static force was applied to a force
transducer held by the subject between the right thumb and
forefinger with randomly assigned force levels (200, 400,
600, 800 and 1000 g) monitored via a visual feedback loop.
Each baseline and activation epoch lasted for 45 s, and the
fundamental frequency of the block design was 0.011 Hz. A
detailed description of this data set can be found in Ref. [8].

2.2. Data analysis environment

In order to overcome the incompatibility and lack of
interoperability among fMRI analytical software packages,
we used Fiswidgets, an interoperable pipeline environment
developed by Fissell et al. [5], as the platform to run various
processing pipelines. Fiswidgets integrates software
packages such as AIR [65,66], AFNI [62] and FSL [63]
and provides Java wrappers to encapsulate recently devel-
oped software tools.

The software used for preprocessing was part of the
Visualization and Analysis Software Tools (VAST), an IDL-
based software library developed at the VA Medical Center,
Minneapolis, MN. The preprocessing software tools and the
IDL-based NPAIRS package were integrated into Fiswidgets
through the Java wrappers that Fiswidgets provides. fMRI
processing pipelines were built and run on the Fiswidgets
GlobalDesktop. Some adaptations were made for models that
were not completely incorporated into Fiswidgets such as
FSL.FEAT [Image Analysis Group, FMRIB at Oxford (http://
www.fmrib.ox.ac.uk/fsl/feat5/index.html)] and SPM2 [Well-
come Department of Imaging Neuroscience, University
College London (http://www.fil.ion.ucl.ac.uk/spm/software/
spm2/)]. FSL.FEAT was run in batch mode with parameter
files through the Unix command widget that Fiswidgets
provides. SPM2 was run outside of the Fiswidgets platform
because it was not integrated into Fiswidgets and relies on
the Matlab environment.

2.3. Preprocessing

Slice timing correction was performed by the FSL.
slicetimer. High-pass temporal filtering was realized by
applying a band-pass filter to the fMRI time series through
multitaper spectrum estimation [64] and setting appropriate
cutoffs. Temporal detrending was achieved by specifying a
linear combination of cosine basis functions in the GLM
design matrix and retaining the residuals and desired effects of
the GLM model as the detrended data [58]. Global intensity
normalization was performed by dividing the intensities of
each scan by its volume mean, for example, proportional
scaling [21]. Spatial smoothing was implemented through
convolution with a 2D, within-slice Gaussian kernel.

Motion correction was carried out with AIR.alignlinear
[65] by applying a six-parameter rigid-body transformation
to align each fMRI volume with the first scan of the first run
in order to remove head motion. The mean fMRI-to-
structural MRI transformation (six parameters) also used
AIR.alignlinear. The intrasubject alignment from individual
fMRI space to structural MRI space was derived by
multiplying the fMRI motion correction transformation
and the mean fMRI-to-structural MRI transformation. The
fMRI scans were then resampled to the individual MRI
space by applying the derived transformation to each
fMRI volume and projecting it into the subject's structural
MRI space.

Intersubject alignment (or spatial normalization) was also
performed for pipeline optimization and evaluation of
analytical models. The intersubject alignment transformation
was derived by combining the intrasubject alignment
transformation with a structural MRI-to-MNI152 (Montréal
Neurological Institute brain template) transformation using a
seventh-order polynomial warp in AIR5.03 [66]. The fMRI
volumes were then aligned to the MNI template brain
through intersubject alignment.

2.4. Evaluate the impact of preprocessing steps

The impact of a series of preprocessing steps [slice timing
correction, motion correction, spatial smoothing, temporal
filtering (high-pass filtering, detrending) and global intensity
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normalization] was investigated with the NPAIRS.CVA
model in single-subject analysis. These steps were chosen
for comparison with published ROC and NPAIRS results.

To avoid testing preprocessing steps in isolation, a set
of preprocessing options in a range of settings (Table 1)
was set to evaluate each tested preprocessing step. For
example, as shown in Table 1, the impact of slice timing
correction was tested by turning it on and off in pipelines
with motion correction, 0- and 2-pixel spatial smoothing
and 0-, 1- and 2-cosine temporal detrending settings.
However, tested parameters were dropped from further
testing when no significant effect was found to limit the
total number of combinations.

After preprocessing, PCA was performed and dimension
reduction (denoising) was achieved by keeping a small
number (2, 5, 10 or 25) of the principal components (PCs)
that accounted for much of the variability in each subject's
data. In order to study the primary effect of activation versus
baseline, a two-class CVA that categorizes six baseline
periods as one class and five activation periods as the other
class was performed using the retained PCs. Scans at the
baseline-to-activation and activation-to-baseline transitions
were dropped to improve the CVA cost function (based on
the ratio of between-class to within-class covariance) [8] by
avoiding hemodynamic transition-scan effects.

For each pipeline combination tested, the NPAIRS
prediction accuracy (calculated as the posterior probability
for each scan's true class membership) and reproducibility
(obtained by correlating the output SPIs from each of the
independent split-half data sets) were used to calculate the
Euclidean distance (D) between each prediction accuracy (p)
and reproducibility (r) value pair (p, r) to the perfect prediction
accuracy and reproducibility pair (1, 1). Equal weighting (1:1)
was given to prediction and reproducibility measures in this
study to calculate the Euclidean distance between the (p, r)
pair of the pipeline tested and the perfect pair (p, r)=(1, 1).
These distances were compared for each subject and each
preprocessing step (Table 1) with and without the preproces-
sing step to identify those that significantly changed the
metrics (distance D) across the 16 subjects.

Mean distance change (ΔM) was used to measure the
impact of each preprocessing step tested, which is defined as
the difference of mean distance across all subjects to perfect
prediction and reproducibility (1, 1) by subtracting the
mean distance with the step from that without the step. It is
expressed as:

DM ¼ D0 � D ¼ 1
N

XN
i¼1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� pi0ð Þ2þ 1� ri0ð Þ2

q
�
XN
i¼1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� pið Þ2þ 1� rið Þ2

q( )
ð1Þ

where D is the mean distance between the (p, r) performance
of the pipeline tested and (1, 1) in the prediction and
reproducibility plane, pi0 and ri0 are the prediction accuracy
and reproducibility without the preprocessing step tested for
the ith subject, pi and ri are the ones with the preprocessing
step for the ith subject and N is the total number of subjects
in the data set.



Table 2
The preprocessing options and parameters for evaluation of nine pipelines

Pipelines/Models Nonidentical options and parameters

1. NPAIRS.CVA1 2 cosine basis detrending,
5 principal components (#PCs)

2. NPAIRS.CVA2 Optimized #PCs (on reproducibility)
3. NPAIRS.CVA3 Optimized detrending and #PCs

(on reproducibility)
4. NPAIRS.CVA4 Optimized smoothing, detrending, #PCs

(on prediction and reproducibility)
5. NPAIRS.GLM1 2 cosine basis detrending
6. NPAIRS.GLM2 Optimized detrending options generated

from NPAIRS.CVA3
7. NPAIRS.GLM3 Optimized smoothing and detrending

options from NPAIRS.CVA4
8. FSL(3.2).FEAT 176 s high-pass filtering cutoff, prewhitening,

default Hrf
9. SPM2 176 s high-pass filtering cutoff, prewhitening,

default Hrf
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A Wilcoxon matched pairs rank sum test (pairing the
distances for each subject with and without a particular
preprocessing step) was used to evaluate the significance of
the steps tested [67]. Relative variation was further computed
through dividing the mean distance change (ΔM) by its
standard deviation to compare the relative impact of the
preprocessing steps tested.

2.5. Optimize the preprocessing steps

Based on the evaluation of preprocessing steps, the
processing pipelines per subject were optimized for spatial
smoothing, temporal detrending and denoising by reducing
the number of PCs for the PCA/CVA model. The parameter
choices included spatial smoothing (FWHM=0, 1.5, 2, 4, 6
pixels), temporal detrending (cosine cycle of 0 and ≤1, 1.5,
2, 3, 4) and #PCs (2, 5, 10, 25) for the two-class CVA.

The impact of such optimization on GLM-based pipelines
was examined with between-subject reproducibility (BSR).
In BSR, the number of activated voxels (ZN3) common to
each pair of subjects relative to the average number of
activated voxels between both subjects was measured, and
this procedure was repeated for all possible pairs of subjects
to obtain a conjunction matrix. The BSR was based on the
average of the conjunction matrix. The BSR measure was
applied to SPIs generated from intersubject aligned data
alone. For a detailed description of BSR conjunction
analysis, see Ref. [59]. Based on the pipeline optimization
results for the 16 subjects, an optimized BSR matrix (16×16)
was formed. The nonoptimized BSR matrices were calcu-
lated using the SPIs generated by the nonoptimized
pipelines, and they were ranked by mean BSR across 16
subjects to obtain the best-performing nonoptimized pipeline
(or the penultimate pipeline), which was then compared with
the optimized BSR matrix to see whether group homogeneity
improved after optimization.

A parametric paired t test and nonparametric Wilcoxon
matched pairs rank sum test were used to calculate the
significance of differences between the optimized BSR
matrix and the best-performing nonoptimized matrix.

2.6. Evaluate heterogeneous pipelines

Using both fixed and individually optimized preproces-
sing pipelines, we compared GLM- and CVA-based analysis
models with four analytical modules in FSL3.2, SPM2 and
NPAIRS, namely, FSL.FEAT(GLM), SPM2(GLM),
NPAIRS.GLM and NPAIRS.CVA. Since a GLM prediction
metric has not been implemented in the current NPAIRS
package, only between-run SPI reproducibility (i.e., the
correlation between the two SPIs generated from each run for
each subject) was used as the performance metric. A second-
level CVA using NPAIRS.CVA was applied to compare the
resulting SPIs and to test for significant spatial pattern
differences across preprocessing pipelines, data analysis
models and heterogeneous software packages.

To evaluate the analytical methods across FSL3.2, SPM2
and NPAIRS, we used identical initial preprocessing steps:
masks were generated by FSL.BET based on the mean fMRI
volume of each subject, and spatial smoothing was performed
with in-plane Gaussian filtering (FWHM=2 pixels).

The preprocessed data were fed to univariate FSL.FEAT,
SPM2 and NPAIRS.GLM and to multivariate NPAIRS.CVA,
respectively, for statistical analysis. Since FSL.FEAT and
SPM2 convolve the GLM design matrix with the hemody-
namic response function and NPAIRS.GLM does not,
transition scans were kept for FSL.FEAT and SPM2 but
were dropped for NPAIRS.GLM and NPAIRS.CVA.
Because of different methods and implementations of
temporal filtering in FSL, SPM2 and NPAIRS (FSL uses
high-pass filtering while SPM2 and NPAIRS use detrending
with a cosine basis function), the parameters of the high-pass
filtering and cosine detrending had to be matched in order to
remove similar components of low-frequency noise. For the
static force data set, a 176-s cutoff was chosen for high-pass
filtering in SPM2 and FSL.FEAT, and two cosine cycles
were chosen as the corresponding cosine detrending
parameter in NPAIRS since after dropping the transition
scans, there are, on average, 16 scans for each baseline–
activation cycle and there are 5.5 task cycles in a run
(corresponding to 352 s).

The number of PCs was fixed at five in order to see the
impact of tuning the CVA in the original two-class CVA
(CVA1, Table 2). In addition, three other CVA variations
were used to monitor changes in between-run reproduci-
bility. They include one with a flexible number of PCs, that
is, optimize #PCs for maximum between-run reproducibility,
CVA2; one with flexible cosine detrending and #PCs, that is,
optimize cosine detrending and #PCs for maximum
between-run reproducibility, CVA3; and, finally, one with
flexible spatial smoothing, cosine detrending and #PCs, that
is, optimize smoothing, detrending and #PCs for the
minimum D [the mean distance to (p, r)=(1, 1)], CVA4.
Similarly, for the NPAIRS.GLM model, the original GLM



Fig. 1. CVA class structure for SPI comparison. The results of nine pipelines— 288 (16 subjects×2 runs×9 models) SPIs were assigned to 18 classes (or groups)
with 16 SPIs in each class.

Table 3
The impact of preprocessing steps tested with CVA-based pipelines

(P1) The impact of slice timing correction

0-pixel smoothing 2-pixel smoothing

#PCs ΔM S.D. Sig. #PCs ΔM S.D. Sig.

0 cosine 5 0.02 0.219 1.00 5 −0.03 0.196 0.62
2 cosine 5 0.09 0.283 0.07 5 0.02 0.308 0.21

(P2) The impact of motion correction

0-pixel smoothing 2-pixel smoothing

#PCs ΔM S.D. Sig. #PCs ΔM S.D. Sig.

0 cosine 2 0.08 0.206 0.04 2 0.11 0.214 0.06
2 cosine 5 0.16 0.089 0.00 5 0.08 0.094 0.00

(P3) The impact of spatial smoothing

0-cosine detrending 2-cosine detrending

#PCs ΔM S.D. Sig. #PCs ΔM S.D. Sig.

1.5 pixels 5 0.09 0.090 0.00 2 0.12 0.239 0.00
2 pixels 5 0.12 0.095 0.00 5 0.11 0.093 0.00
4 pixels 25 0.12 0.061 0.00 5 0.14 0.141 0.00
6 pixels 25 0.12 0.080 0.00 25 0.10 0.058 0.00

(P4.1) The impact of high-pass filtering

Cutoff (Hz) 0-pixel smoothing 2-pixel smoothing

#PCs ΔM S.D. Sig. #PCs ΔM S.D. Sig.

0.002 25 0.04 0.087 0.03 10 0.07 0.103 0.02
0.004 25 0.05 0.083 0.03 10 0.06 0.090 0.02
0.006 25 0.06 0.086 0.02 10 0.10 0.124 0.01
0.008 10 0.02 0.165 0.70 10 0.03 0.123 0.39

(P4.2) The impact of cosine basis detrending

No. of
cosine cycles

0-pixel smoothing 2-pixel smoothing

#PCs ΔM S.D. Sig. #PCs ΔM S.D. Sig.

1 2 0.09 0.232 0.14 2 0.16 0.250 0.03
2 2 0.15 0.158 0.00 2 0.17 0.190 0.00
3 5 0.09 0.149 0.02 2 0.10 0.125 0.00
4 10 0.04 0.173 0.36 10 0.03 0.130 0.45

(P5) The impact of global intensity normalization

0-pixel smoothing 2-pixel smoothing

#PCs ΔM S.D. Sig. #PCs ΔM S.D. Sig.

0 cosine 25 0.05 0.164 1.00 5 0.07 0.210 0.37
2 cosine 2 0.03 0.043 0.02 2 0.05 0.162 0.59
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method was named GLM1. GLM2 was formed by applying
CVA3 (flexible cosine detrending) detrending parameters to
the input of GLM, and GLM3 was formed by applying
CVA4 preprocessing parameters. The seven pipelines
together with FSL.FEAT and SPM2 (FSL.FEAT and
SPM2 were applied with prewhitening by default) formed
the nine pipelines, and their parameter settings are listed
in Table 2. Both intrasubject and intersubject alignments
were performed.

After running these heterogeneous pipelines, the mean
between-run SPI reproducibility across the 16 subjects was
calculated. A Wilcoxon matched pairs rank sum test was
used to evaluate the significance of selected between-run
reproducibility differences.

A second-level NPAIRS-CVA, that is, applying CVA
class structure to the SPIs being compared per subject per
run, was then applied to the 288 (16 subjects×2 runs×9
pipelines) SPIs generated by the above 9 pipelines with
resampled split-half groups of 8 subjects. The class structure
of the second-level CVA is presented in Fig. 1. Subject
variance and mean run effect were removed by subtracting
the mean of each SPI and normalizing it by its spatial
variance in order to help CVA capture the variance of these
SPIs caused by the processing of pipeline components (i.e.,
preprocessing steps and statistical analysis).

Prewhitening was performed with FSL.FEAT- and SPM2-
based pipelines (see Table 2 for details) but not with
NPAIRS.GLM/CVA-based pipelines (since prewhitening
was not implemented in the IDL-based VAST and NPAIRS
package). In order to test the impact of prewhitening, we
added an FSL.FEAT-based pipeline with no prewhitening
performed to the above 9 pipelines. A second-level CVAwas
performed on the SPIs generated by the 10 pipelines to test
the relative impact of prewhitening.

In order to see the difference between individually
optimized and group-wise spatial smoothing, an SPI
comparison was performed by a second-level CVA on the
SPIs generated by seven heterogeneous pipelines at 2- and 6-
pixel spatial smoothing and 2-cosine detrending. These
pipelines were named CVA1 — NPAIRS.CVA with 5 PCs,
2-pixel smoothing; CVA2 — NPAIRS.CVA with optimized
#PCs, 2-pixel smoothing; GLM1 — NPAIRS.GLM, 2-
pixel smoothing; and FEAT1 — FSL.FEAT with 176 s
high-pass filtering, 2-pixel smoothing; CVA3, GLM2 and



Table 4
Summary of the impact of the preprocessing steps tested

Preprocessing steps ΔM S.D. Sig. Coeff. vari.

1 Slice timing correction 0.07 0.197 0.14 0.355
2 Motion correction 0.08 0.094 0.00 0.851
3 Spatial smoothing (SS) 0.11 0.093 0.00 1.183
4 High-pass filtering (HPF) 0.10 0.124 0.01 0.806

Temporal detrending (TD) 0.17 0.190 0.03 0.895
5 Global intensity normalization 0.04 0.100 0.13 0.400

Note: ΔM — mean distance change (mean distance without the tested
preprocessing step−mean distance with the tested preprocessing step); Sig.
— significance tested by Wilcoxon matched pairs rank sum test; Coeff. vari.
— coefficient of variation, that is, normalized mean distance change.

270 J. Zhang et al. / Magnetic Resonance Imaging 27 (2009) 264–278
FEAT2 have the same pipeline options as CVA1, GLM1
and FEAT1, respectively, except for 6-pixel spatial
smoothing instead of 2-pixel spatial smoothing.
3. Results

3.1. Evaluate the impact of preprocessing steps

Table 3 gives the results of preprocessing steps tested in
the pipelines as described in Table 1. The mean distance
change (ΔM) is a result of turning on and off a preprocessing
step; ΔMN0 implies improved performance. Table 3
indicates that slice timing correction and global intensity
normalization have little impact. Motion correction, spatial
smoothing, temporal detrending and high-pass filtering were
found to significantly improve the performance of CVA-
based pipelines (Pb.05).

Table 4 summarizes the evaluation results of all the pre-
processing steps tested (in Table 3) at 2-pixel spatial
smoothing with optimized detrending parameter that is
obtained by calculating the relative variation, that is, the
maximum ratio of the mean distance change (ΔM) to the
corresponding standard deviation. One can see that for block
designs, slice timing correction and global intensity normal-
ization have little impact, while spatial smoothing has the
largest positive impact, followed by temporal detrending,
motion correction and high-pass filtering on the performance
of CVA-based fMRI processing pipelines.

3.2. Optimize the processing pipelines

The optimization results are summarized in Table 5. There
is considerable variance among the subjects in the optimized
preprocessing parameters and the minimum distance to
perfect prediction and reproducibility: it ranges from 0.12
with prediction and reproducibility of (0.90, 0.95) for S4, or
(0.96, 0.89) for S15, to 0.53 (0.60, 0.65) for S13. There are
differences in optimal processing options and insignificant
difference (Min. Dist.) in the minimum distances between
intrasubject and intersubject alignment.

The results of the optimization impact on pipeline
performance across the 16 subjects are summarized in
Table 5B with BSR for all pairs of subjects. In Table 5B, a
negative mean difference indicates an improvement in SPIs
generated by the optimized preprocessing data. The results of
paired t and Wilcoxon matched paired rank sum tests show
that the best performing nonoptimized BSR conjunction
matrix is significantly better than the optimized BSR
conjunction matrix (Mean Diff. N 0), but pipeline optimiza-
tion on average significantly improves the BSR (Avg. Mean
Diff. b 0). This might suggest a minor gain in group
homogeneity, namely, the improved common activation
detection across all 16 subjects.

3.3. Evaluate heterogeneous pipelines

3.3.1. With one NPAIRS metric — SPI reproducibility
Fig. 2 presents the evaluation results of mean between-

run reproducibility for the nine analytical models (listed in
Table 2). The range of mean between-run reproducibility
is from 50% to 75%. One can see that the lowest mean
reproducibility is CVA1 (nonoptimized #PCs), which is
significantly lower than that of FEAT and SPM2. However,
when the CVA model is optimized on #PCs (with between-
run reproducibility metric), its mean reproducibility increases
dramatically (indicated as CVA2).

Furthermore, when we allow both #PCs and temporal
detrending to be optimized, the reproducibility further
increases as shown in Fig. 2 (CVA3). However, when the
optimized detrending parameters were applied to the input of
GLM, the mean reproducibility stayed the same (GLM2) as
that of GLM1. Friedman's test (a nonparametric test for
differences of several treatment effects in a randomized com-
plete block design [67]) indicates that there is no significant
difference (Pb.05) in the distribution of mean reproducibility
between FEAT, SPM2 and GLM1, between FEAT, SPM2 and
CVA2, or between FEAT, SPM2 and CVA3. Nevertheless,
when the CVA model is applied to the optimized preproces-
sing data (where the optimization was based on prediction
and between-run reproducibility metrics for the three options
of spatial smoothing, temporal detrending and #PCs), it
generates even higher mean reproducibility between runs
(CVA4). When such optimized preprocessing options were
applied to the input of GLM as GLM3 represents, it improved
the mean between-run reproducibility for the GLM model.
The CVA4 and GLM3 improvements are not unexpected
given the overall increase in smoothing kernel size above 2
pixels for most subjects (see Table 5).

Fig. 2 also shows that the mean between-run reproduci-
bility generated from intrasubject aligned data is, in general,
higher than that generated from intersubject aligned data,
which suggests that some noise was introduced through
MRI-to-MNI transformation in intersubject alignment.

3.3.2. SPI comparison through second-level CVA
Fig. 3 illustrates the CVA results of SPI comparisons

where the 288 (16 subject×2 runs×9 models) SPIs were
generated from the 9 pipeline models (Table 2) on
intersubject aligned data. It indicates that the differences



Table 5

(A) The optimal preprocessing options and results for 16 single subjects

Subject Spatial smoothing
(pixel)

Temporal detrending
(cosine)

Denoising (#PCs) Min. Dist.

Intra. Inter. Intra. Inter. Intra. Inter. Intra. Inter.

S1 6 6 1.5 2 10 10 0.38 0.34
S2 6 6 2 2 10 10 0.38 0.42
S3 0 1.5 1.5 2 5 2 0.30 0.29
S4 2 2 2 2 2 2 0.12 0.13
S5 4 6 1 0 5 10 0.29 0.35
S6 4 4 2 2 5 5 0.26 0.31
S7 4 4 1.5 0 2 2 0.17 0.17
S8 4 6 3 1.5 5 5 0.25 0.37
S9 6 4 3 3 2 2 0.40 0.42
S10 6 6 1.5 1.5 2 2 0.18 0.19
S11 4 4 1 1 10 10 0.46 0.47
S12 4 4 2 1 2 2 0.30 0.29
S13 6 6 2 1.5 5 2 0.53 0.51
S14 0 6 1 1.5 10 25 0.46 0.52
S15 2 2 3 3 2 2 0.12 0.13
S16 6 4 2 0 10 10 0.28 0.29

Note: #PCs— number of principal components; Min. Dist.— the minimum distance between the (prediction, reproducibility) pair of the tested pipeline to (1, 1)
perfect prediction and reproducibility pair; Intra. — intrasubject alignment; Inter. — intersubject alignment.

(B) The impact of pipeline optimization (with BSR)

BSR S.D. Paired T Sig. W. S. Sig.

Mean Diff. 0.095 0.312 0.00 0.00
Avg. Mean Diff. −0.106 0.204 0.00 0.00

Note: Mean Diff. BSR— mean difference (best-performing nonoptimized BSR conjunction matrix−optimized BSR conjunction matrix); Avg. Mean Diff. BSR
—mean difference (the average of the best-performing and worst-performing nonoptimized BSR conjunction matrix−optimized BSR conjunction matrix). W. S.
Sig. — significance of Wilcoxon matched pairs rank sum test.
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between the univariate GLMmodel and the multivariate CVA
model account for the largest variance (80.1%) due to
activation pattern differences, regardless of the details of the
GLMmodel (e.g., HRF or noHRF), software implementation
[SPM2 (blue), FSL.FEAT (red), NPAIRS.GLM (black and
green)] and little mismatches in parameter matching (for
cutoffs of high-pass filtering in FSL.FEAT and detrending
in SPM2 and NPAIRS.GLM). The second largest variance
(13.9%) is driven by differences in spatial smoothing
across subjects for the individually optimized pipelines —
Gaussian FWHM ranges from 0 to 6 pixels (green) while
the remaining pipelines have FWHM=2 pixels. There are
much smaller variations across the black lines joining the
16-subject means. These are due to preprocessing pipeline
differences within a given model class and run. The run-to-
run effects are even smaller and occur mainly in the
individual subject distributions about the similar means/
pipeline (black line segments) across runs. Fig. 4 gives the
details of the two sources of variances in canonical
eigenimages (CE). Fig. 4A represents the first dimension
of CVA variances in SPI comparison, that is, the variance
due to activation pattern differences between CVA and
GLM where red-yellow regions are significantly higher in
CVA SPIs and blue-green regions are significantly higher
in GLM SPIs. It shows that the CVA-based models are
more sensitive to activations and functional connectivity
around the cerebellum (A10) and parietal cortex (A26-27)
with some potential artifacts (A17-A20), while the GLM-
based models are more sensitive to activations in regions
such as the motor and premotor cortex (A26-27) and
associate occipital cortex (A15-17) (in blue-green regions).
Fig. 4B is the second-dimension CE (or CE2), which
illustrates the spatial pattern from variance of individually
optimized spatial smoothing.

Fig. 5 provides an overall view of the impact of
prewhitening tested with second-level CVA. The CV score
plots demonstrate that prewhitening creates little variance
(less than 100%−79.6%−14.5%=5.9%) in the SPI compar-
isons compared to the largest variance (79.6%), which is
caused by the model difference between CVA and GLM,
which forms canonical variable 1 (CV1, or first-dimension
CV), followed by the second largest variance (14.5%) caused
by individually optimized spatial smoothing that forms CV2
(or second-dimension CV). Compared with Fig. 2, there was
not much change for pipelines with and without prewhiten-
ing, which suggests that the overall impact of prewhitening is
small relative to other pipeline options such as model
selection and spatial smoothing.

For group-wise spatial smoothing, Fig. 6 indicates that
the group-mean differences of spatial smoothing between 2



Fig. 2. Mean between-run reproducibility of on-off effect analyzed by nine analytical models (see Table 2 for pipeline details). FEAT, FSL(3.2).FEAT; GLM1,
NPAIRS.GLM; GLM2, NPAIRS.GLM2; GLM3, NPAIRS.GLM3; CVA1, NPAIRS.CVA1; CVA2, NPAIRS.CVA2; CVA3, NPAIRS.CVA3; CVA4, NPAIRS.
CVA4; Intra_subj. —Intra-subject alignment; Inter_subj — Inter-subject alignment. The error bar is the standard error.
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and 6 pixels account for the largest variance (93.1%, CV1)
of the second-level CVA, followed by the mean differences
between univariate model GLMs and multivariate model
CVAs (6.0%, CV2). Fig. 7 illustrates the details of the
group-mean differences in the spatial patterns of brain
images. Spatial smoothing with 6 pixels (images labeled
with A) tends to help identify activations around primary
motor cortex, premotor cortex and supplementary motor
area (A25-27) while reducing potential artifacts (A17-18),
Fig. 3. Canonical score plot for the first and second dimensions of CVA varianc
NPAIRS.CVA1; 2. NPAIRS.CVA2; 3. NPAIRS.CVA3; 4. NPAIRS.CVA4 (upper
green); 8. FSL.FEAT (red); 9. SPM2 (blue).
and CV2 (images labeled with B) reflects a pattern similar
to CVA vs GLM differences in CE1 of Figure 4. Figs. 6
and 7 provide evidence that spatial smoothing and
univariate versus multivariate model selection are the most
important pipeline choices in generating SPIs. Also, Figs. 6
and 7 suggest that the order of first-dimension CV (CV1) and
second-dimension CV (CV2) in SPI comparison is not fixed,
but changes depending on pipeline options — when the
pipeline difference in spatial smoothing was larger than the
e analysis nine pipelines for each run (with pipeline details in Table 2): 1
green); 5. NPAIRS.GLM1; 6. NPAIRS.GLM2; 7. NPAIRS.GLM3 (lower
.



Fig. 4. Spatial patterns (first two dimensions) of CVAvariance analysis. (A) First dimension, variance between CVA and GLM; (B) Second dimension, variance
of optimized smoothing. CE1: canonical eigenimage of the first dimension; CE2: canonical eigenimage of the second dimension.
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model difference, the variance in spatial smoothing became
CV1 and model difference became CV2.
4. Discussion

Although univariate GLM is still the dominant approach
in fMRI analysis today, there is growing interest in
multivariate approaches because they are often data driven
and model free and have the potential to directly reveal the
functional connectivity of neural networks in the brain. In
this study, we applied the NPAIRS approach to the
evaluation and optimization of multivariate CVA-based
fMRI processing pipelines in single-subject analysis. For
preprocessing steps in CVA-based pipelines, both NPAIRS
metrics (prediction accuracy and SPI reproducibility) were
used as performance measures in this study. To compare with
univariate GLM-based pipelines, we used between-run SPI
reproducibility alone since a GLM prediction metric has not
been implemented in the current NPAIRS package for fMRI
software packages such as SPM, which hinders it from
evaluating SPM-based pipelines with prediction accuracy
metric. In addition, a second-level CVA was applied to the
SPIs generated by heterogeneous pipelines to see the relative
importance of major fMRI processing pipeline choices.

4.1. Evaluation of the preprocessing steps

The results of the preprocessing step evaluation indicate
that, first, slice timing correction in block-design fMRI
analysis has little impact on the performance of fMRI
processing pipeline, a not unexpected result given that the
transition scans most sensitive to the hemodynamic response
function had been dropped. However, the remaining block
scans reflect a worst-case potential interaction between slice
timing and head motion with alternating slice acquisition and
an approximately 4-s TR. It is reassuring to find that this
does not seem to be a problem. This result supports the
current practice that slice timing correction is omitted for
block designs (and performed only for event-related fMRI)
[18,19]. Another study based on the experiment with the
slice timing correction tool in SPM99 concluded that for
block designs, not using slice timing correction gave a more
robust activation than slice timing correction [68]. While
recognizing potential problems with slice timing correction,
Smith et al. [63] suggest that slice timing correction should
be performed with motion correction in an integral approach.

Second, the results demonstrate that in most cases tested,
the impact of within-run global intensity normalization on
pipeline performance is not significant, which is consistent
with the results using ROC analysis by Skudlarski et al. [6].
This is probably due to nonuniform drift across each scan,
and Skudlarski et al. [6] further suggested that it would be
unwise to apply global intensity normalization as a general
procedure. However, Jezzard et al. [17] pointed out that if
global intensity normalization is not carried out, there can be
a problem with multisession group analyses and it becomes
necessary to perform grand mean normalization.

Third, our results demonstrate that motion correction can
significantly improve the performance of CVA-based single-
subject fMRI processing pipelines. On the other hand, the
results of simulation (with GLM-based pipelines) in Ref. [6]
showed that motion correction (performed with the SPM
package) did not change the relative efficiency in data
analysis. LaConte et al. [8] found that there was little impact
with within-subject alignment (which includes motion
correction) on NPAIRS performance metrics. However, at
a closer look, Jezzard et al. [17] pointed out that when
subject motion is uncorrelated with the experimental



Fig. 5. Canonical variate (CV) scores of 10-pipeline SPI comparisons with and without prewhitening. Ten pipelines for two averaged runs: 1. NPAIRS.CVA1
2. NPAIRS.CVA2; 3. NPAIRS.CVA3; 4. NPAIRS.CVA4; 5. NPAIRS.GLM1; 6. NPAIRS.GLM2; 7. NPAIRS.GLM3; 8. FSL.FEAT without prewhitening; 9
FSL.FEAT with prewhitening; 10. SPM2 with prewhitening. Pipelines 1–8 are without prewhitening; pipelines 9–10 are with prewhitening. See Table 2 for
details of pipelines 1–7, and 9, 10 above, which equal 8, 9 of Table 2, respectively. (A) First dimension, variance between CVA and GLM; (B) Second
dimension, variance of optimized smoothing.
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paradigm, motion correction makes the activation analysis
more sensitive by reducing the standard error and leaving the
power of the response unchanged, but when motion is
stimulus correlated, motion correction reduces the apparent
level of activation. Due to the multivariate nature of CVA,
CVA is less influenced by stimulus-correlated motion along
each voxel but more influenced by stimulus-uncorrelated
motion, which causes the improved signal detection and
pipeline performance through motion correction. The
difference in results between the LaConte et al. [8] study
and this study may stem from the different approaches taken
Fig. 6. Canonical variate (CV) score plots of seven-pipeline SPI comparisons through second-level CVA with seven pipelines for each run: (A) Firs
dimension, variance between 6-pixel and 2-pixel spatial smoothing; (B) second dimension, variance between CVA and GLM. 1. CVA1 (2-pixe
smoothing, 5 #PCs); 2. CVA2 (2-pixel smoothing, optimized #PCs); 3. CVA3 (6-pixel, optimized #PCs); 4. GLM1 (2-pixel smoothing); 5. GLM2 (6-pixe
smoothing); 6. FEAT1 (2-pixel smoothing); 7. FEAT2 (6-pixel smoothing).
;
.

to measure variance (difference of means in Ref. [8] vs.
maximum mean difference among all #PCs options in this
study) and subject variability.

In addition, we have reported that motion correction
had some negative impact on GLM-based processing
pipelines [61], which suggests that stimulus-correlated
head motion misleads the GLM model (causing lower
prediction and reproducibility), but it seemed that it could
not mislead the CVA model due to the multivariate nature
of CVA. Lund et al. [71] reported that inclusion of motion
parameters in the design matrix of GLM analysis
t
l
l



Fig. 7. Spatial patterns of seven-pipeline SPI comparisons through second-level CVA with: (A) First dimension, heavy smoothing (6-pixels, gold-reds)Nlight
smoothing (2-pixels, blue-greens); (B) Second dimension, CVANGLM (gold-reds), GLMNCVA (blue-greens).
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significantly reduced both the intrasubject and the inter-
subject variance. Several fMRI software packages now
allow motion parameters to be included as regressors in the
analysis. Morgan et al. [72] compared the sensitivity of
four commonly used fMRI software packages such as
SPM2 and FSL with simulated data. They found that the
most sensitive analysis technique was to perform motion
correction and include the realignment parameters as
regressors in the GLM, which was most beneficial when
stimulus-correlated motion was present.

Fourth, the positive impact of spatial smoothing, high-
pass filtering and temporal detrending has been confirmed by
ROC analyses [6] (Della-Maggiore et al., 2002) and previous
NPAIRS analyses [10,62]. Due to the nonisotropic voxel size
(3.4×3.4×5 mm) of the fMRI data set used, 2D in-plane
spatial smoothing was performed in this study, while 3D
spatial smoothing, which is suitable for data with isotropic
voxel size, is more commonly used in fMRI preprocessing
nowadays. In general, 3D spatial smoothing may lead to
higher sensitivity, but the gain in sensitivity must supersede
the loss in specificity induced by the larger number of
degrees of freedom that accompanies 3D smoothing. More-
over, Friman et al. [73] reported that compared with 2D
spatial smoothing, better performance of 3D smoothing was
obtained at the cost of extra computations.

Further, our results show that for block designs, slice
timing correction and global intensity normalization have
little impact, but spatial smoothing, temporal detrending,
motion correction and high-pass filtering significantly
improve CVA-based pipeline performance. Interestingly,
these results are, in general, similar to the results obtained
from GLM-based pipelines [61] where we found that slice
timing correction and global intensity normalization have
little consistent impact on fMRI processing pipelines and
that spatial smoothing and high-pass filtering and/or
temporal detrending significantly increase pipeline perfor-
mance. This suggests that the impact of preprocessing
steps on pipeline performance might be somewhat model
independent [59].

To allow for the possible interaction among parameter
settings of various processing steps along the processing
pipeline, we designed our evaluation experiment in a way
that each preprocessing step was tested in a variety of
parameter settings (e.g., different levels of spatial smooth-
ing and temporal detrending). The evaluation results of the
preprocessing steps confirm that the parameter settings of
the five preprocessing steps we tested (slice timing
correction, motion correction, spatial smoothing, temporal
filtering and global intensity normalization) do interact
with one another. Therefore, it does not seem reasonable
to evaluate and optimize the processing steps in relative
isolation [62].

Since this study uses one data set (the static force data
set), its results may or may not be applicable to other data
sets. However, the majority of our results (i.e., significant
positive impact of spatial smoothing, high-pass filtering and
temporal detrending as well as little impact of slice timing
correction and global intensity normalization) on the
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performance of multivariate CVA-based pipelines are
consistent with previous ROC findings and/or findings
from other studies that are mostly based on univariate GLM
[6] (Della-Maggiore et al., 2002). This consistency suggests
that the impact of these preprocessing steps tends to be
somewhat model independent.

4.2. Optimization of fMRI processing pipelines

In this study, the NPAIRS-based optimization of fMRI
single-subject processing pipelines is by no means exhaus-
tive, and only a subset of parameter choices that are of testing
importance has been selected. Nevertheless, the results
demonstrate considerable variation of optimal options
among subjects.

Furthermore, the analysis results based on BSR demon-
strate that NPAIRS-based optimization, on average, signifi-
cantly improves activation detection across all subjects in the
group (or group homogeneity), which supports aggregating
the individually optimized data in a random-effect group
analysis to obtain improved group results [59].

4.3. Evaluation of heterogeneous pipelines

With the available NPAIRS performance metrics in the
NPAIRS framework, the evaluation results based on
between-run reproducibility and SPI comparison through
secondary CVA revealed some valuable information. First,
the largest variance in the resulting SPIs (i.e., the output of
processing pipelines) is caused by the variance between
heterogeneous models GLM and CVA (80.1%) (regardless
of the software packages used: FSL.FEAT, SPM2 and
NPAIRS). This reveals the fundamental difference between
the two kinds of statistical analysis models (univariate GLM
and multivariate CVA) in activation detection. The
univariate GLM examines one voxel at a time and its
variance is based on the mean intensity changes at a single
voxel along the time series. The statistical scores generated
by the univariate GLM are linearly proportional to the ratio
of relative signal to relative noise. On the other hand,
multivariate PCA/CVA examines all voxels in a scan
simultaneously and characterizes the spatial and temporal
response over the entire volume; since the CVA solution is
drawn from the eigenstructure of W−1B (W is the within-
class covariance and B is the between-class covariance),
CVA is sensitive to the mean-difference covariance
structure (i.e., B in W−1B) and there is a tendency for
W−1 to act as a pooled noise term compared to the voxel-
based variance estimate of GLM. [69]. The relative noise
measurements performed by Shaw et al. [70] showed that
the CVA was more sensitive to correlated signals while
GLM was not. This may explain why CVA highlighted
certain brain regions that GLM identifies with lower
statistical values. On the other hand, there are other brain
regions revealed strongly by univariate GLM that have
lower statistical values using multivariate CVA. The reason
is that there is a larger mean difference in the voxel intensity
between the baseline and activation groups along the single
time series (easily identified by the GLM) than the
difference in the CVA covariance structure. The funda-
mental differences between univariate GLM and multi-
variate CVA suggest that they may necessarily serve as
complementary approaches in fMRI analysis.

Second, individually optimized spatial smoothing accounts
for 13.9% (Figs. 3 and 4) of the pipeline variance and the
group-wise spatial smoothing can account for 93.1% (Figs. 6
and 7) of the pipeline variance. This reveals the important
impact of spatial smoothing on the pipeline performance. The
important role of spatial smoothing was also observed in
Refs. [8,58]. The between-run reproducibility results in Fig. 2
confirm the value of optimizing preprocessing steps (spatial
smoothing and temporal detrending) and model parameter
(#PCs). When these parameters were optimized, the mean
reproducibility between runs for CVA model increased,
which indicates the importance and necessity of tuning
pipeline parameters.

Third, although there are large differences between the
GLM- and CVA-based models, there are also similarities in
their SPI reproducibility results. Fig. 2 indicates that both the
CVA and GLM model can generate similar mean between-
run reproducibility with a range of 60–75% after CVA
optimized on #PCs (i.e., the output SPIs are, on average, 60–
75% reproducible between runs for both GLM- and CVA-
based models). This is consistent with the finding in PET
studies (similar activation pattern reproducibility between
the GLM and CVA results) [59].

The limitation of this study is that since the GLM
prediction metric for SPM is not available in the current
NPAIRS package, only between-run reproducibility in the
NPAIRS performance metrics is used, which is inadequate
by itself for pipeline evaluation [11]. Thus, it is necessary to
explore GLM prediction metric for commonly used software
packages such as SPM in the future.

In summary, in this study, we investigated the impact of
commonly used fMRI preprocessing steps, optimized the
associated multivariate CVA-based single-subject fMRI
processing pipelines with the NPAIRS approach and
compared univariate GLM versus CVA-based processing
pipelines with SPI reproducibility and a second-level CVA.
The results demonstrated that for the block-design data
used, (a) slice timing correction and global intensity
normalization have little consistent impact on the fMRI
processing pipeline, but spatial smoothing, temporal
detrending or high-pass filtering, and motion correction
significantly improved pipeline performance across all
subjects; (b) the combined optimization of spatial smooth-
ing, temporal detrending and CVA model parameters on
average improved between-subject reproducibility; and (c)
the most important pipeline choices include univariate or
multivariate statistical models and spatial smoothing. The
fundamental differences between univariate GLM and
multivariate CVA suggest that they may necessarily serve
as complementary approaches in fMRI analysis. The
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limitations of the current NPAIRS package revealed in this
study will motivate further development and improvement
of the NPAIRS framework so that it can assess fMRI
processing pipelines of both univariate and multivariate
models across various fMRI analysis software packages
(SPM, AFNI, etc.) and help improve the accuracy and
reliability of fMRI software packages to meet the demand
of growing fMRI applications.
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